The correct answer is (c) y=-x
Easy explanation: \(\frac{dy}{dx} = \frac{y^2-2xy-x^2}{y^2+2xy-x^2} = \frac{\frac{y^2}{x^2} – \frac{2y}{x} – 1}{\frac{y^2}{x^2} + \frac{2y}{x} -1} \)……. is a homogeneous equation
thus put \(y = vx \rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} = \frac{v^2-2v-1}{v^2+2v-1}\)
separating the variables and integrating we get
\(x\frac{dv}{dx} = \frac{v^2-2v-1}{v^2+2v-1} – v = -\frac{(v^3+v^2+v+1)}{v^2+2v-1} = -\frac{(v^2+1)(v+1)}{v^2+2v-1}\)
\(\int \frac{v^2+2v-1}{(v^2+1)(v+1)} \,dv = \int \frac{-1}{x} \,dx\)
\(\int\frac{2v(v+1)-(v^2+1)}{(v^2+1)(v+1)} \,dv = log \,c – log \,x\)
\(\int(\frac{2v}{v^2+1}-\frac{1}{v+1}) \,dv = log \,c – log \,x\)
log(v^2+1) – log(v+1) + log x = log c –> \(\frac{(v^2+1)x}{(v+1)}=c\)
\(\rightarrow \frac{x^2+y^2}{x+y} = c \rightarrow k(x^2+y^2)=(x+y)\) where k=1/c
at x=1, y=-1 substituting we get 2k=0→k=0
thus the particular solution is y=-x.