Right option is (d) \(\left [\frac{12s^2-16}{(s^2+4)^3}\right ]\)
To explain: We know that,
\(L(t^n f(t))=(-1)^n \frac{d^n F(s)}{ds^n}\),
Here, f(t)=sin(2t)=>F(s)=\(\frac{2}{s^2+4}\),
Hence, \(L(t^2 sin(2t))=\frac{d^2}{ds^2} (\frac{2}{s^2+4})=\frac{d}{ds} \frac{(s^2+4).0-2(2s)}{(s^2+4)^2}\)
=\(-4\left [\frac{(s^2+4)^2-2s(s^2+4)2s}{(s^2+4)^4} \right ]=\left [\frac{12s^2-16}{(s^2+4)^3}\right ]\)