Correct answer is (d) \(\frac{2s}{1-s^2} e^{-s}\)
Explanation: y(t)=\(e^{|t-1|}\)
Laplace transform of e^|t| =\(\int_{-\infty}^\infty e^{|t|} e^{-st} dt\)
=\(\int_0^∞ e^t e^{-st} dt-\int_{-∞}^0 e^{-t} e^{-st} dt\)
=\(\int_0^∞ e^{-(s-1)t} dt-∫_{-∞}^0 e^{(-s-1)t} dt\)
Now,\(\int_0^∞ e^{-(s-1)t} dt=\left [-\frac{1}{s-1} [e^{-(s-1)t}]\right ]_∞^0\)
=\(\left [-\frac{1}{s-1} [e^{-(s-1)t} ]\right ]_∞^0=\frac{-1}{s-1}\)
Now, \(∫_{-∞}^0 e^{(-s-1)t} dt=\left [\frac{1}{-(s+1)} [e^{(-s-1)t}]\right ]_0^{-∞}\)
=\(\left [-\frac{1}{s+1} [e^{(-s-1)t} ]\right ]_0^{-∞}=-\frac{1}{(s+1)}\)
Laplace transform of |t| e^|t| =\(\int_{-\infty}^\infty e^{|t|} e^{-st} dt=-\left [\frac{1}{s-1}+\frac{1}{s+1}\right ]=-\left [\frac{2s}{s^2-1}\right ]\)
Laplace transform of |t| e^|t| = \(\int_{-\infty}^\infty e^{|t-1|} e^{-st} dt=\frac{2s}{1-s^2} e^{-s}\)