Right answer is (b) –^1⁄2 e^-t + ^1⁄6 e^t + ^1⁄3 e^-2t
To explain I would say: Given, \(F(s)=\frac{1}{(s+1)(s-1)(s+2)}=\frac{-1}{2(s+1)} +\frac{1}{6(s-1)}+\frac{1}{3(s+2)}\)
Hence, inverse laplace transform is \(f(t)=-\frac{1}{2} e^{-t}+\frac{1}{6} e^t+\frac{1}{3} e^{-2}\)