The correct option is (d) -e^-t + 1 – e^t – 1
Explanation: Given,
Y(s)=\(\frac{2s}{1-s^2}e^{-s}\)
Let,G(s)=\(\frac{2s}{1-s^2}=-\frac{1}{s – 1}-\frac{1}{s + 1}\)
hence,g(t)=\(-e^{-t} – e^t\)
Since,Y(s)=\(e^{-s} G(s)=>y(t)=g(t-1)\)
hence,y(t)=\(-e^{-t+1}-e^{t-1}\)