Correct choice is (d) r=k(1-sin θ)
The explanation: r=a(1+sin θ) taking log we get log r=log a+log(1+sin θ)…differentiating
w.r.t θ we have, \( \frac{1}{r} \frac{dr}{dθ} = \frac{cosθ}{1+sinθ}\) since given equation is polar slope of tangent is given by \( \frac{1}{r} \frac{dr}{dθ}\) and perpendicular line has a slope of \(-r\frac{dθ}{dr} \, replacing\, \frac{1}{r} \frac{dr}{dθ} \,by\, -r\frac{dθ}{dr}\)
we have \(-r\frac{dθ}{dr} = \frac{cosθ}{1+sinθ}\) …..separating the variables and integrating it
\(\int \frac{dr}{r} + \int \frac{1+sinθ}{cosθ} \,dθ = c \rightarrow log r + \int secθ \,dθ + \int tanθ \, dθ = c\)
log r + log(secθ + tanθ) + log(secθ) = c = log k
\(\rightarrow log(r(secθ + tanθ) (secθ)) = log k \rightarrow r\left(\frac{1}{cosθ} + \frac{sinθ}{cosθ}\right) \frac{1}{cosθ} = k\)
\(\frac{r(1+sinθ)}{cos^2 θ} = \frac{r(1+sinθ)}{1-sin^2 θ} \rightarrow r = k(1-sin θ)\) is the required orthogonal trajectory.