Right answer is (b) \(e^{-t} \{cos(2\sqrt{2t})-sin(2\sqrt{2t})\}\)
The best I can explain: In the given question,
\(L^{-1} \left (\frac{s}{2s+9+s^2}\right )=L^{-1} \left (\frac{s}{(s+1)^2}+8)\right )\)
=\(L^{-1} \left (\frac{(s+1)-1}{(s+1)^2+8}\right )\)
=\(e^{-t} L^{-1} \left (\frac{(s-1)}{s^2+8}\right )\) ———————–By First Shifting Property
=\(e^{-t} L^{-1} \left (\frac{s}{s^2+8}\right )-e^{-t} L^{-1} \left (\frac{1}{s^2+8}\right )\)
=\(e^{-t} \{cos(2\sqrt{2t})-sin(2\sqrt{2t})\}\).