Correct option is (d) \(\frac{1}{5} \left (\frac{sin(2t)}{2}-\frac{sin(3t)}{3}\right )\)
To elaborate: In the given question,
\(L^{-1} \left (\frac{1}{(s^2+4)(s^2+9)}\right)\)
=\(\frac{1}{5} L^{-1} \left (\frac{5}{(s^2+4)(s^2+9)}\right)\)
=\(\frac{1}{5} L^{-1} \left (\frac{(s^2+9)-(s^2+4)}{(s^2+4)(s^2+9)}\right)\)
=\(\frac{1}{5} L^{-1} \left (\frac{1}{(s^2+4)}\right )-\frac{1}{5} L^{-1} \left (\frac{1}{(s^2+9)}\right)\)
=\(\frac{1}{5} \left (\frac{sin(2t)}{2}-\frac{sin(3t)}{3}\right)\).