Right choice is (b) \(\frac{-1}{2} e^{-t}+\frac{9}{2} e^{-2t}-3e^{-3t} \)
The explanation: Taking inverse Laplace Transformation for
\(Y(s) = \frac{(s^2-s+3)}{(s+1)(s+2)(s+3)} \)
Solving the partial fractions we get,
\(Y(s) = \frac{-1}{2} \frac{1}{(s+1)}+\frac{9}{2} \frac{1}{(s+2)}-3 \frac{1}{(s+3)} \)
Therefore, \(y(t) = \frac{-1}{2} e^{-t}+\frac{9}{2} e^{-2t}-3e^{-3t}. \)