Correct option is (a) \(\frac{1}{2}×(cos \frac{\pi}{6}+isin \frac{\pi}{6})\)
Explanation: We know that,
\(1+\sqrt 3 i=2(cos \frac{\pi}{3}+isin \frac{\pi}{3})\)
\(\sqrt 3-i=2(cos \frac{\pi}{6}-isin \frac{\pi}{6})\)
\(\frac{(1+\sqrt 3 i) ^{16}}{(\sqrt 3-i) {^17}}=\frac{2^{16}(cos \frac{\pi}{3}+isin \frac{\pi}{3}) ^{16}}{2^{17}(cos \frac{\pi}{6}-isin \frac{\pi}{6}) ^{17}}\)
By Demoivre’s Theorem
= \(\frac{1}{2}×(cos \frac{16\pi}{3}+isin \frac{16\pi}{3})(cos \frac{17\pi}{6}+isin \frac{17\pi}{6})\)
= \(\frac{1}{2}×(cos(\frac{49\pi}{6})+isin(\frac{49\pi}{6}))\)
= \(\frac{1}{2}×(cos\frac{\pi}{6}+isin\frac{\pi}{6})\).