The correct choice is (c) 2^50 (cos25π-isin25π)
For explanation I would say: We know that,
\(1-i=\sqrt 2 (\frac{1}{\sqrt 2}-\frac{i}{\sqrt 2})=\sqrt 2 (cos \frac{\pi}{4}-isin \frac{\pi}{4})\)
\((1-i) ^{100}=(\sqrt 2 (cos \frac{\pi}{4}-isin \frac{\pi}{4})) ^{100}=2^{50}((cos \frac{\pi}{4}-isin \frac{\pi}{4})) ^{100}\)
By Applying the DeMoivre’s Theorem
\((1-i)^{100}=2^{50} (cos \frac{100\pi}{4}-isin \frac{100\pi}{4})\)
\((1-i)^{100}=2^{50} (cos25\pi-sin25\pi)\).