Right answer is (d) 2^50 (cos25π+isin25π)
Easiest explanation: We know that,
1+i=\(\sqrt 2 (\frac{1}{\sqrt 2}+\frac{i}{\sqrt 2})=\sqrt 2 (cos \frac{\pi}{4}+isin \frac{\pi}{4})\)
\((1+i)^{100}=(\sqrt 2 \left (cos \frac{\pi}{4}+isin \frac{\pi}{4}\right ))^{100}=2^{50}(\left(cos \frac{\pi}{4}+isin \frac{\pi}{4}\right))^{100}\)
By Applying the DeMoivre’s Theorem
\((1+i)^{100}=2^{50} \left (cos 100\frac{\pi}{4}+isin 100\frac{\pi}{4} \right )\)
\((1+i)^{100}=2^{50} (cos25\pi+isin25\pi)\).