The correct option is (b) \(\frac{1}{(a+jω)^2} \)
To explain I would say: Using frequency differentiation property, \(tx(t) \leftrightarrow j \frac{d}{dω} \,X(ω)\)
\(F[te^{-at} u(t)] = j \frac{d}{dω} F[te^{-at} \,u(t)] = j \frac{d}{dω} \frac{1}{a+jω} = j \frac{-1(j)}{(a+jω)^2} = \frac{1}{(a+jω)^2} \)
\(te^{-at} \,u(t) \leftrightarrow \frac{1}{(a+jω)^2} \).