Right option is (b) j2πfX(f)
Explanation: We know that x(t) = \(\frac{1}{2π} \int_{-∞}^∞ X(ω) e^{jωt} \,dω\)
\( \frac{d}{dt} \,x(t) = \frac{1}{2π} \int_{-∞}^∞ X(ω) \frac{d}{dt} e^{jωt} \,dω = \frac{1}{2π} jω X(ω) \int_{-∞}^∞ e^{jωt} \,dω\)
= jω X(ω) = j2πfX(f).