Right option is (b) \(\frac{j}{πt}\)
To explain I would say: Given the function F(ω)=sgn(ω). The Fourier transform of a Signum function is sgn(ω) = \(\frac{2}{jω}\).
Applying the duality property F(t) ↔ 2πf(-ω), we get
F(\(\frac{2}{jt}\)) = 2πsgn(-ω).
As sgn(ω) is an odd function, sgn(-ω)=-sgn(ω).
Hence, \(\frac{2}{jt}\) ↔ -sgn(ω)
Or \(\frac{2}{πt}\) ↔ sgn(ω)
Therefore, the inverse Fourier transform of sgn(ω) is \(\frac{j}{πt}\).