Correct option is (d) 3e^-3t u(t) – 8te^-3t u(t)
To explain: Given X(ω) = \(\frac{1+3(jω)}{(3+jω)^2} = \frac{A}{3+jω} + \frac{B}{(3+jω)^2} = \frac{3}{3+jω} – \frac{8}{(3+jω)^2}\)
Applying inverse Fourier transform, we get
x(t) = 3e^-3t u(t) – 8te^-3t u(t).