The correct option is (b) \(\frac{1}{2π(2-jt)}\)
To explain: We know that x(t) = \(\frac{1}{2π} \int_{-∞}^∞ X(ω) e^{jωt} \,dω\)
x(t) = \(\frac{1}{2π} \int_{-∞}^∞ e^{-2ω} \,u(ω) e^{jωt} \,dω = \frac{1}{2π} \int_{-∞}^∞ e^{-2ω} e^{jωt} \, dω = \frac{1}{2π(2-jt)}\).