Correct choice is (b) \(\frac{1}{2j} \left(\frac{1}{1+j(ω-2π)} – \frac{1}{1+j(ω+2π)}\right)\)
The explanation is: The Fourier Transform of e^-tu (t) = \(\frac{1}{1+jω}\)
∴ Fourier transform of e^-3|t| = \(\frac{6}{9+ω^2}\)
So, x (t-1) <–> X {j (ω-2π)}
∴ X (jω) = \(\frac{1}{2j} \left(\frac{1}{1+j(ω-2π)} – \frac{1}{1+j(ω+2π)}\right)\).