The correct answer is (a) 2.5 + 3.18 cos (2π × 10^3 t) – 1.06 cos (6π × 10^3 t)
For explanation: Period, T = \(\frac{1}{f} = \frac{1}{1×10^3} = 10^{-3}s\)
Ratio, \(\frac{τ}{T} = \frac{500 × 10^{-6}}{10^{-3}} \) = 0.5
Now, \(f (t) = \frac{Aτ}{T} + 2 \frac{Aτ}{T} \frac{sin \frac{πτ}{T}}{\frac{πτ}{T}} cos[\frac{2πt}{τ}] + \frac{2Aτ}{T} \frac{sin \frac{2πτ}{T}}{\frac{2πτ}{T}} cos \frac{4πt}{T}\)
= 5(0.5) + 2(5) (0.5)\(\frac{sin0.5π}{0.5π}\) cos(2π × 10^3 t) + 2(5) (0.5) \(\frac{sinπ}{π}\) cos(4π × 10^3 t)
= 2.5 + 3.18 cos (2π × 10^3 t) – 1.06 cos (6π × 10^3 t).