Correct option is (c) \(\frac{13}{3}\) V
Easiest explanation: Applying voltage divider method, we get,
I = \(\frac{V}{R_{EQ}} \)
= \(\frac{8}{1+1||1} \)
= \(\frac{8}{1+\frac{1}{2}} = \frac{16}{3}\) A
I1 = \(\frac{16}{3} × \frac{1}{2} = \frac{8}{3}\) A
And \(I’_2 = \frac{V}{R_{EQ}} = \frac{5}{1+1||1}\)
= \(\frac{5}{1+\frac{1}{2}} = \frac{10}{3}\) A
Now, \(I’_1 = I’_2 × \frac{1}{1+1} \)
= \(\frac{10}{3} × \frac{1}{2} = \frac{5}{3}\) A
Hence, the net current in 1Ω resistance = I1 + \(I’_1\)
= \(\frac{8}{3} + \frac{5}{3} = \frac{13}{3}\) A
∴ Voltage drop across 1Ω = \(\frac{13}{3} × 1 = \frac{13}{3}\) V.