Correct option is (c) 3u(t)
Explanation: For u (t) = 1, t>0
V1 (t) = (1-e^-3t)
Or, V1 (s) = \(\left(\frac{1}{s} + \frac{1}{s+3}\right) = \frac{3}{s(s+3)}\)
And T(s) = \(\frac{V_1 (S)}{u(S)} = \frac{3}{s+3}\)
Now, for R(s) = (\(\frac{3}{s}\) + 1)
Response, H(s) = R(s) T(s) = \((\frac{3+s}{s}) (\frac{3}{s+3}) = \frac{3}{s}\)
Or, h (t) = 3 u (t).