The correct choice is (d) \(\frac{5}{6}e^{3t} – \frac{5}{6e^{-3t}}\)
To explain I would say: F (t) = L^-1{F(s)}
= L^-1{\(\frac{5}{s^2-9}\)}
= L^-1\({\frac{A}{s-3} + \frac{B}{s+3}}\)
Hence, A = (s-3) \(\frac{5}{(s-3)(s+3)}|_{s=3} = \frac{5}{6}\)
And, B = (s+3) \(\frac{5}{(s-3)(s+3)}|_{s=-3} = -\frac{5}{6}\)
The inverse Laplace transform is \(\frac{5}{6}e^{3t} – \frac{5}{6e^{-3t}}\).