Right answer is (a) a + b = -3
Easy explanation: The point is (a, b)
Distance between (3, 1) and (a, b) = \( \sqrt {(x_2-x_1)^2 + (y_2-y_1)^2} \)
= \( \sqrt {(a-3)^2 + (b-1)^2} \)
= \( \sqrt {a^2-6a + 9 + b^2-2b + 1} \)
= \( \sqrt {a^2-6a + 10 + b^2-2b} \)
Distance between (2, 0) and (a, b) = \( \sqrt {(x_2-x_1)^2 + (y_2-y_1)^2} \)
= \( \sqrt {(a-2)^2 + (b-0)^2} \)
= \( \sqrt {a^2-4a + 4 + b^2 } \)
Since, the point (a, b) is equidistant from (-1, 0) and (3, 9)
The distances will be equal
∴ \( \sqrt {a^2-6a + 10 + b^2-2b} = \sqrt {a^2-4a + 4 + b^2 } \)
Squaring on both sides we get,
a^2 – 6a + 10 + b^2 – 2b = a^2 – 4a + 4 + b^2
-6a + 10 – 2b = -4a + 4
-2a – 6 = 2b
-a – b = 3
a + b = -3