Right choice is (c) -cot^2 x(3 sin^2 x + cos^2 x)
To explain: \(\frac{d}{dx}(\frac{cosx}{secx \,tanx}) = \frac{d}{dx}(\frac{cosx}{\frac{1}{cosx}\frac{sinx}{cosx}})\)
=\(\frac{d}{dx}(\frac{cos^3x}{sinx})\)
Using quotient rule, we know that, \(\frac{d}{dx} (\frac{f}{g}) = \frac{g.\frac{d}{dx} (f) – f.\frac{d}{dx}(g)}{g^2}\)
Here, f = cos^3 x and g = sin x
\(\frac{d}{dx}(\frac{cos^3x}{sinx})\) = \(\frac{sinx.\frac{d}{dx} (cos^3x)-cos^3x.\frac{d}{dx}(sinx)}{sin^2x}\)
\(\frac{d}{dx}(\frac{cos^3x}{sinx})\) = \(\frac{sinx (-3 cos^2 x \,sin x) – cos^3x(cosx)}{sin^2x}\)
\(\frac{d}{dx}(\frac{cos^3x}{sinx})\) = \(\frac{-3 sin^2x \,cos^2x – cos^4x}{sin^2x}\)
\(\frac{d}{dx}(\frac{cos^3x}{sinx})\) = -cot^2 x(3 sin^2 x + cos^2 x)