Correct choice is (a) \(\frac{-2}{(3x-1)\sqrt{(3x-1)(x+1)}}\)
The explanation: Consider y=\(\sqrt{\frac{x+1}{3x-1}}\)
Applying log to both sides, we get
logy=log\(\sqrt{\frac{x+1}{3x-1}}\)
logy=\(\frac{1}{2} log\left (\frac{x+1}{3x-1}\right )\)
logy=\(\frac{1}{2}\) (log(x+1)-log(3x-1))
Differentiating with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{d}{dx} (log(x+1))-\frac{d}{dx} (log(3x-1))\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{1}{x+1}-\frac{3}{3x-1}\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{3x-1-3x-3}{(x+1)(3x-1)})\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{-4}{(x+1)(3x-1)}\right )\)
\(\frac{dy}{dx}\)=\(\sqrt{\frac{x+1}{3x-1}} \left (\frac{-2}{(x+1)(3x-1)}\right )\)
\(\frac{dy}{dx}\)=\(\frac{-2}{(3x-1) \sqrt{(3x-1)(x+1)}}\)