Correct choice is (a) 2 csc^2x.tanx^cotx (1-log(tanx))
Easy explanation: Consider y=2(tanx)^cotx
Applying log in both sides,
logy=log2(tanx)^cotx
logy=log2+log(tanx)^cotx
logy=log2+cotx log(tanx)
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=0+\frac{d}{dx} \,(cotx) \,log(tanx)+cotx \frac{d}{dx} \,(log(tanx))\)
\(\frac{1}{y} \frac{dy}{dx}=-csc^{2}x.log(tanx)+cotx.\frac{1}{tanx}.sec^{2}x\)
\(\frac{dy}{dx} = y\left(-csc^{2x}.log(tanx)+\frac{(1+tan^{2x})}{tan^{2x}}\right)\)
\(\frac{dy}{dx}\)=2(tanx)^cotx \(\left (-csc^{2x} log(tanx)+cot^{2x}+1 \right )\)
\(\frac{dy}{dx}\)=2(tanx)^cotx \((-csc^{2x} log(tanx)+csc^{2x})\)
\(\frac{dy}{dx}\)=2(tanx)^cotx (csc^2x (1-log(tanx))
∴\(\frac{dy}{dx}\)=2 csc^2x.tanx^cotx (1-log(tanx))