The correct option is (a) 9^tan3x (3 log9 sec^2x)
For explanation: Consider y=9^tan3x
Applying log on both sides, we get
logy=log9^tan3x
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} \)(tan3x.log9)
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} \,(tan3x) \,log9+\frac{d}{dx} \,(log9).tan3x \,(∵ Using \,u.v=u’ \,v+uv’)\)
\(\frac{dy}{dx}\)=y(3 sec^2x.log9+0)
\(\frac{dy}{dx}\)=9^tan3x (3 log9 sec^2x)