Correct choice is (c) 6-\(\frac{1}{x^2}\)
The best I can explain: Given that, y=3x^2+log(4x)
\(\frac{dy}{dx}=6x+\frac{1}{4x}.4=6x+\frac{1}{x}=\frac{6x^2+1}{x}\)
\(\frac{d^2 y}{dx^2}=\frac{\frac{d}{dx} (6x^2+1).(x)-\frac{d}{dx} (x).(6x^2+1)}{x^2} \Big(using\, \frac{d}{dx} (\frac{u}{v})=\frac{(\frac{d}{dx} (u).v-\frac{d}{dx} (v).u)}{v^2}\Big)\)
\(\frac{d^2 y}{dx^2}=\frac{(12x.x-6x^2-1)}{x^2} \)
\(\frac{d^2 y}{dx^2}=\frac{6x^2-1}{x^2} = 6-\frac{1}{x^2}\).