The correct choice is (b) 2a{(b-c)(c-a+b)}
For explanation: Δ=\(\begin{vmatrix}b-c&b&c\\a&c-a&c\\a&b&a-b\end{vmatrix}\)
Applying C2→C2-C3
Δ=\(\begin{vmatrix}b-c&b-c&c\\a&-a&c\\a&-a&a-b\end{vmatrix}\)
Applying C1→C1-C2
Δ=\(\begin{vmatrix}0&b-c&c\\2a&-a&c\\2a&-a&a-b\end{vmatrix}\)
Applying R2→R2-R3
Δ=\(\begin{vmatrix}0&b-c&c\\0&0&c-a+b\\2a&-a&a-b\end{vmatrix}\)
Expanding along C1, we get
Δ=2a{(b-c)(c-a+b)}