The correct choice is (d) sinθ-cos^2θ
The explanation is: Δ=\(\begin{vmatrix}cosθ&-cosθ&1\\sin^2θ&cos^2θ&1\\sinθ&-sinθ&1\end{vmatrix}\)
Applying C1→C1+C2
Δ=\(\begin{vmatrix}cosθ-cosθ&-cosθ&1\\sin^2θ+cos^2θ&cos^2θ&1\\sinθ-sinθ&-sinθ&1\end{vmatrix}\)=\(\begin{vmatrix}0&-cosθ&1\\1&cos^2θ&1\\0&-sinθ&1\end{vmatrix}\)
Expanding along C1, we get
0-1(cos^2θ+sinθ)=sinθ-cos^2θ.