Correct option is (c) x-y=4
The best I can explain: Let C(x,y) be a point on the line AB. Thus, the points A(5,1), B(4,0), C(x,y) are collinear. Hence, the area of the triangle formed by these points will be 0.
⇒Δ=\(\frac{1}{2}\begin{Vmatrix}5&1&1\\4&0&1\\x&y&1\end{Vmatrix}\)=0
Applying R1→R1-R2
\(\frac{1}{2}\begin{Vmatrix}1&1&0\\4&0&1\\x&y&1\end{Vmatrix}\)=0
Expanding along R1, we get
=\(\frac{1}{2}\) {1(0-y)-1(4-x)}=0
=\(\frac{1}{2}\) {-y-4+x}=0
⇒x-y=4.