The correct option is (b) \(\begin{bmatrix}\frac{-1}{13}&\frac{3}{13}\\ \frac{5}{13}&\frac{-2}{13}\end{bmatrix}\)
The explanation: Consider the matrix A=\(\begin{bmatrix}2&3\\5&1\end{bmatrix}\)
Using elementary row operation, we write A=IA.
\(\begin{bmatrix}2&3\\5&1\end{bmatrix}\)=\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)A
\(\begin{bmatrix}-13&0\\5&1\end{bmatrix}\)=\(\begin{bmatrix}1&-3\\0&1\end{bmatrix}\)A (Applying R1→R1-3R2)
\(\begin{bmatrix}1&0\\5&1\end{bmatrix}\)=\(\begin{bmatrix}\frac{-1}{13}&\frac{3}{13}\\0&1\end{bmatrix}\)A (Applying \(R_1 \rightarrow -\frac{R_1}{13}\))
\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)=\(\begin{bmatrix}\frac{-1}{13}&\frac{3}{13}\\ \frac{5}{13}&\frac{-2}{13}\end{bmatrix}\)A (Applying R2→R2-5R1)
\(A^{-1}=\begin{bmatrix}\frac{-1}{13}&\frac{3}{13}\\ \frac{5}{13}&\frac{-2}{13}\end{bmatrix}\).