The correct option is (c) \begin{bmatrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}
Easy explanation: Consider the matrix A=\begin{bmatrix}8&1\\1&2\end{bmatrix}
Using the elementary row operation, we write A=IA
Applying R2→8R2-R1 and R2→R2/15, we get
\begin{bmatrix}8&1\\0&1\end{bmatrix}=\begin{bmatrix}1&0\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}A
Applying R1→R1-R2 and R1→R1/8, we get
\begin{bmatrix}1&0\\0&1\end{bmatrix}=\begin{bmatrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}A
A^-1=\begin{bmatrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}.