The correct option is (c) \(\begin{bmatrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}\)
Easy explanation: Consider the matrix A=\(\begin{bmatrix}8&1\\1&2\end{bmatrix}\)
Using the elementary row operation, we write A=IA
Applying R2→8R2-R1 and R2→R2/15, we get
\(\begin{bmatrix}8&1\\0&1\end{bmatrix}\)=\(\begin{bmatrix}1&0\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}\)A
Applying R1→R1-R2 and R1→R1/8, we get
\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)=\(\begin{bmatrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}\)A
A^-1=\(\begin{bmatrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&\frac{8}{15}\end{bmatrix}\).