Right answer is (b) -9
Easy explanation: Given that,
\(\begin{vmatrix}x & 3 & 6 \\3 & 6 & x \\6 & x & 3 \end {vmatrix}\) = \(\begin{vmatrix}2 & x & 7 \\x & 7 & 2\\7 & 2 & x \end {vmatrix}\) = \(\begin{vmatrix}4 & 5 & x \\ 5 & x & 4 \\x & 4 & 6 \end {vmatrix}\)
So, by circular determinant property,
Sum of the elements of a row = 0
So, x + 3 + 6 = 2 + x + 7 = 4 + 5 + x = 0
=> x = -9