Correct answer is (d) 4e^2x+\(\frac{e^x}{(1-e^2x)^{3/2}}\)
The explanation: Given that, y=e^2x+sin^-1e^x
\(\frac{dy}{dx}\)=2e^2x+\(\frac{1}{\sqrt{1-e^{2x}}} e^x\)
\(\frac{d^2 y}{dx^2} = 4e^2x+\bigg(\frac{\frac{d}{dx} (e^x) \sqrt{1-e^{2x}} – \frac{d}{dx} (\sqrt{1-e^{2x}}).e^x}{(\sqrt{1-e^{2x}})^2}\bigg)\)
\(=4e^{2x}+\frac{(e^x \sqrt{1-e^{2x}})-e^x \left(\frac{1}{2\sqrt{1-e^{2x}}}.-2e^{2x}\right)}{1-e^{2x}}\)
\(=4e^{2x}+\frac{(e^x (1-e^{2x})+e^{3x})}{(1-e^{2x})^{\frac{3}{2}}}\)
\(=4e^{2x}+\frac{e^x (1-e^{2x}+e^{2x})}{(1-e^{2x})^{\frac{3}{2}}}\)
4e^2x+\(\frac{e^x}{(1-e^2x)^{3/2}}\).