Right answer is (d) 5-\(\frac{5}{\sqrt{2}}\)
Easy explanation: I=\(\int_0^1 \frac{5 \,sin(tan^{-1)}x}{1+x^2} \,dx\)
Let tan^-1x=t
Differentiating w.r.t x, we get
\(\frac{1}{1+x^2} \,dx=dt\)
The new limits
When x=0, t=tan^-10=0
When x=1, t=tan^-1)1=π/4
∴\(\int_0^1 \frac{5 \,sin(tan^{-1}x)}{1+x^2} \,dx=\int_0^{π/4} \,5 \,sint \,dt\)
=\(5[-cost]_0^{π/4}=-5[cost]_0^{π/4}\)
\(=-5(cos \frac{π}{4}-cos0)=-5(\frac{1}{\sqrt{2}-1})=5-\frac{5}{\sqrt{2}}\)