Right choice is (b) -cotxe^-x+C
To explain: \(\int \frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx\)
Let xe^-x=t
Differentiating w.r.t x, we get
\(-xe^{-x}+e^{-x} dx=dt\)
e^-x (1-x)dx=dt
\(\int \frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx=\int \frac{dt}{sin^2t}\)
=\(\int cosec^2 \,t \,dt\)
=-cott+C
Replacing t with xe^-x, we get
\(\int \frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx=-cotxe^{-x}+C\).