Right option is (c) –\(\frac{3}{4} \,(cos(x+2))+\frac{1}{12} \,cos(3x+6)+C\)
Explanation: To find: ∫ 3 sin^3(x+2) dx
We know that, sin3x=3 sinx-4 sin^3x
∴sin^3x=\(\frac{3 sinx-sin3x}{4}\)
sin^3(x+2)=\(\frac{(3 sin(x+2)-sin(3x+6))}{4}\)
\(\int sin^3(x+2) \,dx=\frac{3}{4} \int sin(x+2) \,dx-\frac{1}{4} \int \,sin(3x+6) \,dx\)
=-\(\frac{3}{4} \,(cos(x+2))+\frac{1}{12} \,cos(3x+6)+C\)