The correct answer is (b) –\(\frac{3}{2} cosx+\frac{cos3x}{6}+x+C\)
The best explanation: We know that, sin3x=3 sinx-4 sin^3x
∴sin^3x=\(\frac{3 sinx-sin3x}{4}\)
\(\int 2 \,sin^3x+1 \,dx=\int \frac{(3 sinx-sin3x)}{2} dx+\int dx\)
=\(\frac{3}{2} \int sinx dx-\frac{1}{2} \int sin3x dx+\int dx\)
=-\(\frac{3}{2} cosx+\frac{cos3x}{6}+x+C\)