Right option is (c) \(\frac{3π-2}{3}\)
The explanation is: Let \(I=\int_0^π(1-sin3x)dx\)
F(x)=∫ 1-sin3x dx
=x+\(\frac{cos3x}{3}\)
Applying the limits by using the fundamental theorem of calculus, we get
I=F(π)-F(0)
=\(π+\frac{cos3π}{3}-0-\frac{cos0}{3}\)
=\(π-\frac{1}{3}-\frac{1}{3}=π-\frac{2}{3}=\frac{3π-2}{3}\).