Right answer is (a) 14(3 log2-1)
Explanation: I=\(\int_{\sqrt{2}}^2 \,14x \,log x^2 \,dx\)
Let x^2=t
Differentiating w.r.t x, we get
2x dx=dt
The new limits
When x=\(\sqrt{2}\), t=2
When x=2, t=4
∴\(\int_{\sqrt{2}}^2 \,14x \,log x^2 \,dx =\int_2^4 \,7 \,log t \,dt\)
Using integration by parts, we get
\(\int_2^4 \,7 \,log t \,dt=7(log t\int dt-\int (logt)’ \int \,dt)\)
=7 (t logt-t)2^4
=7(4 log4-4-2 log2+2)
=7(6 log2-2)=14(3 log2-1)