Right answer is (c) \(\frac{9}{4}\left (\frac{π}{2}-1\right)\)
For explanation: Let I=\(\int_0^{\frac{π}{4}} \,9 \,cos^2x \,dx\).
F(x)=\(\int \,9 \,cos^2x \,dx\)
=9\(\int(\frac{1+cos2x}{2})dx\)
=\(\frac{9}{2} (x-\frac{sin2x}{2})\)
Applying the limits, we get
I=\(F(\frac{π}{4})-F(0)=\frac{9}{2} \left (\frac{π}{4}-\frac{sin2(\frac{π}{4})}{2}\right)-\frac{9}{2} (0-\frac{sin0}{2})\)
=\(\frac{9}{2}\left (\frac{π}{4}-\frac{sinπ/2}{2}\right )=\frac{9}{4} (π/2-1)\)