The correct choice is (a) log2
To explain: \(I=\int_0^{π/4} \,2 \,tanx \,dx\)
F(x)=∫ 2 tanx dx
=2∫ tanx dx
=2 log|secx|
Therefore, by using the fundamental theorem of calculus, we get
I=F(π/4)-F(0)
\(=2\left(log|sec \frac{π}{4}|-log|sec0|\right)=2 log\sqrt{2}-log1\)
\(=2 log\sqrt{2}=log(\sqrt{2})^2=log2\)
I=\(\frac{8}{3} log2-\frac{8}{3}-0+\frac{1}{3}=\frac{8}{3} log2-\frac{7}{3}\).