Correct answer is (d) y=\(\frac{(2x-1)^2}{3}\)
Explanation: Given that, \(\frac{dy}{dx}+8x=16x^2+4\)
\(\frac{dy}{dx}=16x^2-8x+4\)
\(\frac{dy}{dx}=(4x-2)^2\)
Separating the variables, we get
dy=(4x-2)^2 dx
Integrating both sides, we get
\(\int dy=\int (4x-2)^2 \,dx\)
y=\(\frac{(4x-2)^2}{12}+C\)
y=\(\frac{(2x-1)^2}{3}+C\) –(1)
Given that, y=1/3 when x=1
Therefore, equation (1) becomes,
\(\frac{1}{3}=\frac{(2(1)-1)^2}{3}+C\)
\(C=\frac{1}{3}-\frac{1}{3}\)=0
Hence, the particular solution for the given differential solution is y=\(\frac{(2x-1)^2}{3}\).