The correct option is (d) x^4-2x^2+4x-4y+C=0
Explanation: Given that, \(\frac{dy}{dx}\)=2-x+x^4
Separating the variables, we get
dy=(2-x+x^3)dx
Integrating on both sides, we get
\(\int dy=\int 2-x+x^3 \,dx\)
\(y=2x-\frac{x^2}{2}+\frac{x^4}{4}+C_1\)
4y=4x-2x^2+x^4+4C1
∴x^4-2x^2+4x-4y+4C1=0
x^4-2x^2+4x-4y+C=0 (where 4C1=C)