Correct choice is (a) 10x^3+12x-3y^2+C=0
To explain I would say: Given that, \(\frac{dy}{dx}=5x^2+2\)
Separating the variables, we get
dy=(5x^2+2)dx –(1)
Integrating both sides of (1), we get
\(\int y \,dy=\int 5x^2+2 \,dx\)
\(\frac{y^2}{2}=\frac{5x^3}{3}+2x+C_1\)
3y^2=\(10x^3+12x+6C_1\)
10x^3+12x-3y^2+C=0 (where 6C1=C)