Correct choice is (b) \(\sqrt{645}\)
To explain: Given that, \(\vec{a}=2\hat{i}+3\hat{j}+4\hat{k}\) and \(\vec{b}=4\hat{i}-2\hat{j}+3\hat{k}\)
∴ \(\vec{a}×\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&3&4\\4&-2&3\end{vmatrix}\)
=\(\hat{i}(9—8)-\hat{j}(6-16)+\hat{k}(-4-12)\)
=\(17\hat{i}+10\hat{j}-16\hat{k}\)
∴\(|\vec{a}×\vec{b}|=\sqrt{17^2+10^2+(-16)^2}\)
=\(\sqrt{289+100+256}\)
=\(\sqrt{645}\)