Right answer is (a) 9
The explanation: I=\(\int_0^{\frac{π^2}{4}} \frac{9 sin\sqrt{x}}{2\sqrt{x}} dx\)
Let \(\sqrt{x}\)=t
Differentiating both sides w.r.t x, we get
\(\frac{1}{2\sqrt{x}} dx=dt\)
The new limits are
When x=0 , t=0
When x=\(\frac{π^2}{4}, t=\frac{π}{2}\)
∴\(\int_0^{\frac{π^2}{4}} \frac{9 sin\sqrt{x}}{2\sqrt{x}} dx=9\int_0^{π/2} sint \,dt\)
=\(9[-cost]_0^{π/2}\)=-9(cos π/2-cos0)=-9(0-1)=9