Correct choice is (d) \(\frac{11}{9} e^3-\frac{8}{9}\)
The explanation: Let \(I=\int_0^1(x+3) \,e^{3x} \,dx\)
F(x)=\(\int (x+3) \,e^{3x} \,dx\)
By using the formula \(\int \,u.v \,dx=u\int \,v dx-\int \,u'(\int \,v \,dx)\), we get
F(x)=(x+3) \(\int e^{3x} \,dx-\int \,(x+3)’\int \,e^{3x} \,dx\)
=\(\frac{(x+3) \,e^{3x}}{3}-\int \frac{e^{3x}}{3} dx\)
=\(\frac{(x+3) e^{3x}}{3}-\frac{e^{3x}}{9}\)
=\(\frac{e^{3x}}{3} (x+3-\frac{1}{3})=\frac{e^{3x}}{9}(3x+8)\)
Applying the limits, we get
I=F(1)-F(0)
=\(\frac{e^{3(1)}}{9} (3+8)-\frac{e^{3(0)}}{9}(0+8)\)
=\(\frac{11}{9} e^3-\frac{8}{9}\).