Right choice is (c) cosx (log(cosx)-1)+C
To explain I would say: Let cosx=t
Differentiating w.r.t x, we get
-sinx dx=dt
sinx dx=-dt
∴∫ sinx log(cosx) dx=∫ -logt dt
Using ∫ u.v dx=u∫ v dx-∫ u’ (∫ v dx) , we get
∫ -logt dt=-logt ∫ 1 dt-∫ (-logt)’ ∫ 1 dt
=-t logt+∫ dt
=-t logt+t
=t(logt-1)
Replacing t with cosx, we get
∫ sinx log(cosx) dx=cosx (log(cosx)-1)+C